# pyomop ![Libraries.io SourceRank](https://img.shields.io/librariesio/sourcerank/pypi/pyomop) [![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/) [![PyPI download total](https://img.shields.io/pypi/dm/pyomop.svg)](https://pypi.python.org/pypi/pyomop/) [![Build](https://github.com/dermatologist/pyomop/workflows/Python%20Test/badge.svg)](https://nuchange.ca) [![Documentation](https://badgen.net/badge/icon/documentation?icon=libraries&label)](https://dermatologist.github.io/pyomop/) ## ✨ Overview **pyomop** is a Python library for working with [OHDSI](https://www.ohdsi.org/) OMOP Common Data Model (CDM) v5.4 or v6 compliant databases using SQLAlchemy as the ORM. It supports converting query results to pandas DataFrames for machine learning pipelines and provides utilities for working with OMOP vocabularies. Table definitions are based on the [omop-cdm](https://github.com/thehyve/omop-cdm) library. Pyomop is designed to be a lightweight, easy-to-use library for researchers and developers experimenting and testing with OMOP CDM databases. - Supports SQLite, PostgreSQL, and MySQL. (All tables are in the default schema) (See usage below for more details) - LLM-based natural language queries via llama-index. [Usage](examples/llm_example.py). - Execute [QueryLibrary](https://github.com/OHDSI/QueryLibrary). (See usage below for more details) ## Installation **Stable release:** ``` pip install pyomop ``` **Development version:** ``` git clone https://github.com/dermatologist/pyomop.git cd pyomop pip install -e . ``` **LLM support:** ``` pip install pyomop[llm] ``` See [llm_example.py](examples/llm_example.py) for usage. ## 🔧 Usage ```python from pyomop import CdmEngineFactory, CdmVocabulary, CdmVector # cdm6 and cdm54 are supported from pyomop.cdm54 import Person, Cohort, Vocabulary, Base from sqlalchemy.future import select import datetime import asyncio async def main(): cdm = CdmEngineFactory() # Creates SQLite database by default for fast testing # cdm = CdmEngineFactory(db='pgsql', host='', port=5432, # user='', pw='', # name='', schema='public') # cdm = CdmEngineFactory(db='mysql', host='', port=3306, # user='', pw='', # name='') engine = cdm.engine # Comment the following line if using an existing database. Both cdm6 and cdm54 are supported, see the import statements above await cdm.init_models(Base.metadata) # Initializes the database with the OMOP CDM tables vocab = CdmVocabulary(cdm, version='cdm54') # or 'cdm6' for v6 # Uncomment the following line to create a new vocabulary from CSV files # vocab.create_vocab('/path/to/csv/files') async with cdm.session() as session: async with session.begin(): session.add(Cohort(cohort_definition_id=2, subject_id=100, cohort_end_date=datetime.datetime.now(), cohort_start_date=datetime.datetime.now())) session.add( Person( person_id=100, gender_concept_id=8532, gender_source_concept_id=8512, year_of_birth=1980, month_of_birth=1, day_of_birth=1, birth_datetime=datetime.datetime(1980, 1, 1), race_concept_id=8552, race_source_concept_id=8552, ethnicity_concept_id=38003564, ethnicity_source_concept_id=38003564, ) ) await session.commit() stmt = select(Cohort).where(Cohort.subject_id == 100) result = await session.execute(stmt) for row in result.scalars(): print(row) cohort = await session.get(Cohort, 1) print(cohort) vec = CdmVector() # supports QueryLibrary queries # https://github.com/OHDSI/QueryLibrary/blob/master/inst/shinyApps/QueryLibrary/queries/person/PE02.md result = await vec.query_library(cdm, resource='person', query_name='PE02') df = vec.result_to_df(result) print("DataFrame from result:") print(df.head()) result = await vec.execute(cdm, query='SELECT * from cohort;') print("Executing custom query:") df = vec.result_to_df(result) print("DataFrame from result:") print(df.head()) # access sqlalchemy result directly for row in result: print(row) await session.close() await engine.dispose() asyncio.run(main()) ``` ### Command-line ``` pyomop -help ``` ## Additional Tools - **Convert FHIR to pandas DataFrame:** [fhiry](https://github.com/dermatologist/fhiry) - **.NET and Golang OMOP CDM:** [.NET](https://github.com/dermatologist/omopcdm-dot-net), [Golang](https://github.com/E-Health/gocdm) ## Supported Databases - PostgreSQL - MySQL - SQLite ## Contributing Pull requests are welcome! See [CONTRIBUTING.md](CONTRIBUTING.md). ## Contributors - [Bell Eapen](https://nuchange.ca) [![Twitter Follow](https://img.shields.io/twitter/follow/beapen?style=social)](https://twitter.com/beapen) --- ⭐️ If you find this project useful!