Source code for qrmine.sentiment
import textacy.similarity
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import operator
[docs]
class Sentiment(object):
def __init__(self):
self._analyser = SentimentIntensityAnalyzer()
self._return = {}
[docs]
def sentiment_analyzer_scores(self, sentence):
score = self._analyser.polarity_scores(sentence)
self._return["sentence"] = sentence
self._return["score"] = score
# print("{:-<40} {}\n".format(sentence, str(score)))
return self._return
[docs]
def similarity(self, obj1, obj2, fuzzy_match=False, match_threshold=0.8):
return textacy.similarity.jaccard(obj1, obj2, fuzzy_match=fuzzy_match, match_threshold=match_threshold)
[docs]
def hamming(self, str1, str2):
textacy.similarity.hamming(str1, str2)
"""
Returns the sentiment with maximum score
pos, neg or neu
The Positive, Negative and Neutral scores represent the proportion of text that falls in these categories.
The Compound score is a metric that calculates the sum of all the lexicon ratings which have been normalized between -1(most extreme negative) and +1 (most extreme positive).
More here: https://medium.com/analytics-vidhya/simplifying-social-media-sentiment-analysis-using-vader-in-python-f9e6ec6fc52f
"""
[docs]
def sentiment(self):
self._return["score"].pop("compound", None)
return max(self._return["score"].items(), key=operator.itemgetter(1))[0]